
Trees

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	6.2

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.



Introduction/Outline

• We've	now	learned	about	two	ways	to	
represent	sequence	information.

• Many	examples	of	information	have	a	natural	
branching	structure.

• These	are	represented	as	trees,	which	you	
should	have	learned	about	in	your	data	
structures	course.

• In	this	lesson,	we'll	study	how	to	apply	the	
Design	Recipe	to	trees.

2



Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
–Write	a	data	definition	for	tree-structured	
information

–Write	a	template	for	tree-structured	information
–Write	functions	that	manipulate	that	data,	using	
the	template

3



Binary	Trees

(define-struct leaf (datum))
(define-struct node (lson rson))

;; A Tree is either
;; -- (make-leaf Number)
;; -- (make-node Tree Tree) 

4

There	are	many	ways	to	define	
binary	trees.	We	choose	 this	one	
because	it	is	clear	and	simple.	



Template
tree-fn : Tree -> ???
(define (tree-fn t)
(cond
[(leaf? t) (... (leaf-datum t))]
[else (...

(tree-fn (node-lson t))
(tree-fn (node-rson t)))]))

5

Self-reference	 in	the	data	definition	
leads	to	self-reference	 in	the	template;
Self-reference	 in	the	template	leads	to	
self-reference	 in	the	code.

Here's	the	template	for	this	data	
definition.	 	Observe	that	we	have	
two	self-references	in	the	template,	
corresponding	 to	the	two	self-
references	in	the	data	definition.



The	template	questions
tree-fn : Tree -> ???
(define (tree-fn t)
(cond
[(leaf? t) (... (leaf-datum t))]
[else (...

(tree-fn (node-lson t))
(tree-fn (node-rson t) ))]))

6

What’s	the	answer	
for	a	leaf?

If	you	knew	the	answers	for	the	2	
sons,	how	could	you	find	 the	answer	

for	the	whole	tree?

And	here	are	the	template	
questions.	 	When	we	write	a	
function	using	 the	template,	
we	fill	in	the	template	with	the	
answers	to	these	questions.



The	template	recipe
Question Answer

Does	the	data	definition	 distinguish	
among	different	subclasses	of	data?

Your	template	needs	as	many	cond
clauses	as	subclasses	that	the	data	
definition	 distinguishes.

How	do	the	subclasses	differ	from	each	
other?

Use	the	differences	 to	formulate	a	
condition	per	clause.

Do	any	of	the	clauses	deal	with	structured	
values?

If	so,	add	appropriate	selector	expressions	
to	the	clause.

Does	the	data	definition	 use	self-
references?

Formulate	``natural	recursions''	for	the	
template	to	represent	the	self-references	
of	the	data	definition.

Do	any	of	the	fields	contain	compound or	
mixed	data?

If	the	value	of	a	field	is	a	foo, add	a	call	to	
a	foo-fn to	use	it.

7

The	template	recipe	doesn't	need	to	change



leaf-sum
leaf-sum : Tree -> Number
(define (leaf-sum t)
(cond
[(leaf? t) (leaf-datum t)]
[else (+

(leaf-sum (node-lson t))
(leaf-sum (node-rson t)))]))

8

What’s	the	answer	
for	a	leaf?

If	you	knew	the	answers	for	the	2	
sons,	how could	you	find	 the	answer	

for	the	whole	tree?

Next	we'll	do	some	
examples	of	functions	on	
binary	trees.



leaf-max
leaf-max : Tree -> Number
(define (leaf-max t)
(cond
[(leaf? t) (leaf-datum t)]
[else (max

(leaf-max (node-lson t))
(leaf-max (node-rson t)))]))

9

What’s	the	answer	
for	a	leaf?

If	you	knew	the	answers	for	the	2	
sons,	how	could	you	find	 the	answer	

for	the	whole	tree?



leaf-min
leaf-min : Tree -> Number
(define (leaf-min t)
(cond
[(leaf? t) (leaf-datum t)]
[else (min

(leaf-min (node-lson t))
(leaf-min (node-rson t)))]))

10

What’s	the	answer	
for	a	leaf?

If	you	knew	the	answers	for	the	2	
sons,	how	could	you	find	 the	answer	

for	the	whole	tree?



Summary

• You	should	now	be	able	to:
–Write	a	data	definition	for	tree-structured	
information

–Write	a	template	for	tree-structured	information
–Write	functions	that	manipulate	that	data,	using	
the	template

11



Next	Steps

• Study	the	file	06-2-trees.rkt	in	the	Examples	
folder.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	6.2
• Go	on	to	the	next	lesson

12


